Jacob T. Robinson

From Wikitia
Jump to navigation Jump to search
Jacob T. Robinson

Jacob T. Robinson
Add a Photo
NationalityAmerican
CitizenshipUnited States of America
Alma mater
  • University of California
  • Cornell University
Occupation
  • Scientist
  • engineer

Jacob T. Robinson is an American scientist and engineer. His research focuses on nano-neurotechnology, neuroengineering, and bioelectronics. He is best known for making miniature technologies to stimulate and record neural activity. He is currently Associate Professor of Rice University lectrical and Computer Engineering.[1] and Bioengineering at Rice University in Houston, TX and an Adjunct Associate Professor of Neuroscience at Baylor College of Medicine[2].

Education[edit]

Robinson earned a Bachelor of Science in Physics from the University of California, Los Angeles in 2003. He joined the Applied Physics Ph.D. program at Cornell University where he worked with Professor Michal Lipson developing nanoscale devices that confine light to small volumes and thereby enhance the interaction between light and matter[3]. After completing his Ph.D. in 2008, Robinson began postdoctoral research in the Chemistry and Chemical Biology department at Harvard University under Professor Hongkun Park.

Career and research[edit]

Dr. Robinson joined the Rice University faculty in 2012 and Baylor College of Medicine adjunct faculty in 2014. He is a core faculty member in the Rice Center for Rice Neuroengineering Initiative[4].

Robinson’s Lab develops nanotechnologies to measure and manipulate brain activity with the goal of improving our understanding of how the brain works and advancing the treatment of neurological disorders. Specific work includes magnetic nanomaterials, photonics, and nanoelectrodes that improve neural interface performance while reducing their invasiveness[5]. Robinson is a senior member of IEEE, the co-chair of the IEEE Brain Initiative, and a core member of the IEEE Brain neuroethics working group[6][7].

Awards[edit]

  • 2019 Institute of Electrical and Electronics Engineers
  • 2018 Materials Today Rising Star Award
  • 2014 DARPA Young Faculty Award

Publications[edit]

  • Magnetics
    • Z. Yu et al., "34.3 An 8.2mm3 Implantable Neurostimulator with Magnetoelectric Power and Data Transfer," 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 2020, pp. 510-512[8].
  • Photonics
    • Jesse K. Adams, Vivek Boominathan, Benjamin W. Avants, Daniel G. Vercosa, Fan Ye, Richard G. Baraniuk, Jacob T. Robinson and Ashok Veeraraghavan, "Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope", Science Advances 3 (12), e1701548 (2017)[9].
    • Jacob T. Robinson, Long Chen, and Michal Lipson, "On-chip gas detection in silicon optical microcavities," Opt. Express 16, 4296-4301 (2008)[10].
    • Jacob T. Robinson, Kyle Preston, Oskar Painter, and Michal Lipson, "First-principle derivation of gain in high-index-contrast waveguides," Opt. Express 16, 16659-16669 (2008)[11].
    • Jacob T. Robinson, Christina Manolatou, Long Chen, and Michal Lipson, "Ultrasmall Mode Volumes in Dielectric Optical Microcavities", Phys. Rev. Lett. 95 (14), 143901 (2005)[12].
  • Electrodes
    • Flavia Vitale, Daniel G. Vercosa, Alexander V. Rodriguez, Sushma Sri Pamulapati, Frederik Seibt, Eric Lewis, J. Stephen Yan, Krishna Badhiwala, Mohammed Adnan, Gianni Royer-Carfagni, Michael Beierlein, Caleb Kemere, Matteo Pasquali, and Jacob T. Robinson, "Fluidic Microactuation of Flexible Electrodes for Neural Recording", Nano Lett 18 (1), 326-335 (2018)[13].
    • Gonzales, D., Badhiwala, K., Vercosa, D. et al., "Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays", Nature Nanotech 12, 684–691 (2017)[14].
    • Robinson, J., Jorgolli, M., Shalek, A. et al., "Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits", Nature Nanotech 7, 180–184 (2012)[15].
  • Invertebrate Neuroscience
    • Gonzales, D.L., Zhou, J., Fan, B. et al., "A microfluidic-induced C. elegans sleep state," Nat Commun 10 (1), 5035 (2019)[16].
    • Badhiwala, K. N., Gonzales, D. L., Vercosa, D. G., Avants, B. W., & Robinson, J. T., "Microfluidics for electrophysiology, imaging, and behavioral analysis of Hydra," Lab Chip 18 (17), 2523–2539 (2018)[17]

References

  1. "Jacob T. Robinson | Faculty | The People of Rice | Rice University". profiles.rice.edu. Retrieved 2021-06-23.
  2. "BCM Faculty Profile - Jacob Robinson".{{cite web}}: CS1 maint: url-status (link)
  3. Robinson, Jacob T.; Manolatou, Christina; Chen, Long; Lipson, Michal (2005-09-27). "Ultrasmall Mode Volumes in Dielectric Optical Microcavities". Physical Review Letters. 95 (14): 143901. doi:10.1103/PhysRevLett.95.143901.
  4. "Faculty". Neuroengineering | Rice University. Retrieved 2021-06-23.
  5. "Robinson Lab | Research". Robinson Lab. Retrieved 2021-06-23.
  6. "Q&A with Dr. Jacob Robinson, Co-chair, IEEE Brain". IEEE Brain. 2018-09-17. Retrieved 2021-06-23.
  7. "IEEE Brain Neuroethics Framework" (PDF).{{cite web}}: CS1 maint: url-status (link)
  8. Yu, Zhanghao; Chen, Joshua C.; Avants, Benjamin W.; He, Yan; Singer, Amanda; Robinson, Jacob T.; Yang, Kaiyuan (February 2020). "34.3 An 8.2mm3 Implantable Neurostimulator with Magnetoelectric Power and Data Transfer". 2020 IEEE International Solid- State Circuits Conference - (ISSCC): 510–512. doi:10.1109/ISSCC19947.2020.9062931.
  9. Adams, Jesse K.; Boominathan, Vivek; Avants, Benjamin W.; Vercosa, Daniel G.; Ye, Fan; Baraniuk, Richard G.; Robinson, Jacob T.; Veeraraghavan, Ashok (2017-12-01). "Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope". Science Advances. 3 (12): e1701548. doi:10.1126/sciadv.1701548. ISSN 2375-2548.
  10. Robinson, Jacob T.; Chen, Long; Lipson, Michal (2008-03-17). "On-chip gas detection in silicon optical microcavities". Optics Express. 16 (6): 4296–4301. doi:10.1364/OE.16.004296. ISSN 1094-4087.
  11. Robinson, Jacob T.; Preston, Kyle; Painter, Oskar; Lipson, Michal (2008-10-13). "First-principle derivation of gain in high-index-contrast waveguides". Optics Express. 16 (21): 16659–16669. doi:10.1364/OE.16.016659. ISSN 1094-4087.
  12. Robinson, Jacob T.; Manolatou, Christina; Chen, Long; Lipson, Michal (2005-09-27). "Ultrasmall Mode Volumes in Dielectric Optical Microcavities". Physical Review Letters. 95 (14): 143901. doi:10.1103/PhysRevLett.95.143901.
  13. Vitale, Flavia; Vercosa, Daniel G.; Rodriguez, Alexander V.; Pamulapati, Sushma Sri; Seibt, Frederik; Lewis, Eric; Yan, J. Stephen; Badhiwala, Krishna; Adnan, Mohammed; Royer-Carfagni, Gianni; Beierlein, Michael (2018-01-10). "Fluidic Microactuation of Flexible Electrodes for Neural Recording". Nano Letters. 18 (1): 326–335. doi:10.1021/acs.nanolett.7b04184. ISSN 1530-6984. PMC 6632092. PMID 29220192.
  14. Gonzales, Daniel L.; Badhiwala, Krishna N.; Vercosa, Daniel G.; Avants, Benjamin W.; Liu, Zheng; Zhong, Weiwei; Robinson, Jacob T. (July 2017). "Scalable electrophysiology in intact small animals with nanoscale suspended electrode arrays". Nature Nanotechnology. 12 (7): 684–691. doi:10.1038/nnano.2017.55. ISSN 1748-3395.
  15. Robinson, Jacob T.; Jorgolli, Marsela; Shalek, Alex K.; Yoon, Myung-Han; Gertner, Rona S.; Park, Hongkun (March 2012). "Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits". Nature Nanotechnology. 7 (3): 180–184. doi:10.1038/nnano.2011.249. ISSN 1748-3395.
  16. Gonzales, Daniel L.; Zhou, Jasmine; Fan, Bo; Robinson, Jacob T. (2019-11-06). "A microfluidic-induced C. elegans sleep state". Nature Communications. 10 (1): 5035. doi:10.1038/s41467-019-13008-5. ISSN 2041-1723. PMC 6834590. PMID 31695031.
  17. Gonzales, Daniel L.; Zhou, Jasmine; Fan, Bo; Robinson, Jacob T. (2019-11-06). "A microfluidic-induced C. elegans sleep state". Nature Communications. 10 (1): 5035. doi:10.1038/s41467-019-13008-5. ISSN 2041-1723. PMC 6834590. PMID 31695031.

External links

Add External links

This article "Jacob T. Robinson" is from Wikipedia. The list of its authors can be seen in its historical. Articles taken from Draft Namespace on Wikipedia could be accessed on Wikipedia's Draft Namespace.