Epithelial Barrier Theory

From Wikitia
Jump to navigation Jump to search

Epithelial Barrier Theory

The Epithelial Barrier Theory is a comprehensive explanation for the global, epidemic-level rise in chronic health conditions over the past 65 years. The theory, proposes that exposure to toxic substances introduced by industrialization and modern lifestyle changes disrupts the epithelial barrier of the skin, upper and lower airways, and gut mucosa, triggering an inflammatory immune response that can initiate or aggravate many chronic inflammatory diseases.[1][2][3]

Background

The surfaces of our skin, respiratory tract, and gut are all lined with protective cellular layers known as epithelial barriers. Intact epithelial barriers are crucial for homeostasis, as they protect host tissues from infections, environmental toxins, pollutants and allergens.[4][5] Many of the chemical agents found in common consumer products (including toothpaste, shampoo, detergents, and processed foods), are known to damage these critical barriers, increasing permeability to bacteria, toxins, pollutants and allergens.[6][7] When epithelial barriers are disrupted (or “leaky”), substances and microbes can pass into deeper tissues, where they don’t belong and trigger an immune/inflammatory response that can initiate or aggravate many chronic inflammatory diseases.[3][8]

These diseases like asthma, rhinitis, atopic dermatitis, food allergy, inflammatory bowel disease, diabetes, rheumatoid arthritis, and chronic depression are more common in industrialized countries, and their prevalence continues to rise in developing countries in parallel with urbanization and industrialization.[3] This steep increase in chronic, non-communicable diseases has been linked to changes in hygiene, decreased bacterial and worm infections, less microbial and food diversity, increased allergen exposure, changes in indoor environment, and nutrition.[9][10][11][12]

Akdis’s Epithelial Barrier Theory posits that the increase in barrier-damaging agents linked to industrialization, urbanization and modern life underlies the global rise in allergic, autoimmune, neuropsychiatric chronic conditions that now affect more than two billion people worldwide.[1] [2][3][4][5][6][7][8][9][10][11][12][13][14][15][16]

Characteristics of the Epithelial Barrier Theory

  1. Increased prevalence over the last 60 years: The sharp rise in the prevalence of allergic and autoimmune diseases suggests that environmental factors are impacting our immune system.[3][11][17][18][19][20][21][22][23][24] Early reports from the 1960s indicated an increased prevalence of asthma in children and higher hospitalization rates.[25][26][27][28] After the 2000s, a new wave of epidemics emerged, including food allergy and anaphylaxis, eosinophilic esophagitis, and drug-induced anaphylaxis. [29][30][31] Interestingly, the increase in autoimmune diseases, such as diabetes, rheumatoid arthritis, multiple sclerosis, and celiac disease, began in the 1960s, and this trend continues in developing countries. [18][32][33][34][35][36]
  2. Disturbed epithelial barriers: Evidence of epithelial barrier disruption in these conditions suggests that our body's first line of defense against harmful pathogens is not functioning correctly. Epithelial barrier damage has been demonstrated in most cases through direct biopsies of affected tissues.[2][37][38][39][40][41][42][43][44][45][46][47] Three reasons have been identified for this disruption:
    • Genetical defects and mutations in barrier proteins: In the skin, the stratum corneum forms a relatively stronger barrier with its filaggrin repeats and other molecules such as loricrin, involucrin and hornerin.[48] Mutations in filaggrins, polymorphisms in tight junction (TJ) claudin and occludin genes have been reported to play a role on epithelial barrier integrity.[37][49]
    • Direct exposure to pollutants, chemicals, and other environmental factors that are in the exposome can disrupt the epithelial barriers and affect the microbiome and immune system.[3][7]
    • Inflammation in the affected epithelial barriers takes place in asthma, atopic dermatitis, rhinitis, sinusitis and colitis activates the epithelial cells, and these epithelial cells open their barriers. [2][37][44]
  3. Microbial dysbiosis: A healthy microbiota on the surface of the mucosal barrier regulates numerous aspects of barrier homeostasis.[50] However, reduced biodiversity and alterations in the composition of gut and skin microbiota are associated with various inflammatory conditions, including asthma, allergic diseases, inflammatory bowel disease, type 1 diabetes, and obesity.[10] Dysbiosis refers to an imbalance in the microorganisms residing in our tissues, with microbial dysbiosis and bacterial translocation being linked to the development and exacerbation of allergic and autoimmune diseases.[10]
  4. Immune response to commensal bacteria and opportunistic pathogens: In areas with leaky epithelial barriers, the immune system struggles to distinguish between harmful and harmless microorganisms.[51][52] This inability triggers a chronic inflammatory response to harmless microorganisms, decreasing biodiversity and contributing to the development of allergic and autoimmune diseases. [10] In addition, immune response to S. aureus, an opportunistic pathogen is taking place in most of the atopic dermatitis, chronic rhinosinusitis and asthma patients and a high prevalence of IgE antibodies correlates with the disease severity.[53][54][55][56][57]
  5. Peri-epithelial inflammation, epithelitis, and expulsion response: Individuals with leaky epithelial barriers exhibit local inflammation in their epithelial cells, referred to as "epithelitis". Epithelitis is the initial event that attracts proinflammatory cells to the damaged epithelial barrier area[58][59], prompting the immune system to expel tissue-invading commensals and opportunistic pathogens through a process called the "expulsion response”, similar to an essential defense mechanism against helminth parasites.[60][61]
  6. Migration of inflammatory cells to distant organs: Immune cells activated at leaky barrier sites can migrate to distant organs, causing inflammation in those areas. Moreover, increased inflammatory mediators in the circulation, namely, “circulating microinflammation”, consisting of acute phase reactants, chemokines, and cytokines, can be detected. There are clear examples of inflammatory cell migration from barrier leaky areas to diseased tissues. Cutaneous lymphocyte antigen-expressing T cells can get activated in the gut with food allergen exposure and then migrate to skin and exacerbate atopic dermatitis.[62][63][64] In polyallergic patients, activated and circulating T cells express chemokine receptors and have the capacity to migrate towards various allergic tissues.[65] This mechanism could be responsible for the atopic march of allergic diseases, sequentially manifesting as atopic dermatitis, food allergy, asthma, and allergic rhinitis during childhood.[66][67]

Harmful environmental substances that disturb epithelial barriers

Exposure to harmful environmental substances can disturb epithelial barriers, leading to leaky epithelial barriers, microbial dysbiosis, bacterial translocation to inter- and sub-epithelial areas, and tissue microinflammation in and around the barriers. The term "exposome" refers to all environmental factors individuals encounter throughout their lifetime. [6][7][8][68]These factors are categorized into three groups: the general external environment, the specific external environment, and the host-dependent internal environment. The general external environment includes factors such as climate, urban-rural settings, and education level, while the specific external environment comprises individual factors like lifestyle choices, exposure to pollutants, and infectious diseases. The host-dependent internal environment encompasses both the biological effects of external exposure and biological responses, such as metabolic factors, inflammation, and oxidative stress.

Over the last 60 years, industrialization, urbanization, and technological advancements have significantly changed the exposome, raising concerns about their health effects on humans and animals. A recent meta-analysis of 22 chemical inventories from 19 countries revealed that more than 350,000 new substances have been introduced to human lives since the 1960s, with little control over their health effects.[69] Many of these substances may have become pollutants or entered the daily exposome. Unfortunately, 50,000 of them are publicly unknown due to confidential submissions, and nearly 70,000 have been ambiguously described.

Since the 1950s, plastic production has increased nearly 200-fold, with an estimated 8.3 billion metric tons produced worldwide by 2017. Consequently, the human body is continuously exposed to a variety of potentially harmful substances, including particulate matter, diesel exhaust particles, cigarette smoke, nano and microplastic, nanoparticles, ozone, NO, NO2, CO, SO2, household cleaners, laundry and dishwasher detergents, toothpaste, surfactants, emulsifiers, preservatives in processed food, and pesticides.[6][7][8][58][68][69][70][71][72][73][74][75][76][77][78][79][80][81][82]

See also

  • Epithelial
  • Epidemics
  • Food Allergy
  • Anaphylaxis
  • Eosinophilic Esophagitis
  • Autoimmune Diseases
  • Microbiome
  • Immune System

References

  1. 1.0 1.1 Akdis, CA (December 2006). "Allergy and hypersensitivity: mechanisms of allergic disease". Current Opinion in Immunology. 18 (6): 718–726. doi:10.1016/j.coi.2006.09.016. PMID 17029937 – via Elsevier.
  2. 2.0 2.1 2.2 2.3 Soyka, MB; Wawrzyniak, P; Eiwegger, T (30 July 2012). "Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-γ and IL-4". The Journal of Allergy and Clinical Immunology. 130 (5): 1087–1096. doi:10.1016/j.jaci.2012.05.052. PMID 22840853 – via Elsevier.
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Akdis, CA (12 April 2021). "Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions?". Nature Reviews Immunology. 21 (11): 736–751. doi:10.1038/s41577-021-00538-7. PMID 33846604 – via Springer Nature.
  4. 4.0 4.1 Akdis, CA; Soyka, MB; Wawrzyniak, P (23 May 2020). "Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions". Annals of Allergy, Asthma&Immunology. 125 (5): 517–527. doi:10.1016/j.anai.2020.05.016. PMID 32454094 – via Elsevier.
  5. 5.0 5.1 Mitamura, Y; Ogulur, I; Pat, Y (21 Aug 2021). "Dysregulation of the epithelial barrier by environmental and other exogenous factors". Contact Dermatitis. 85 (6): 615–626. doi:10.1111/cod.13959. PMC 9293165. PMID 34420214 – via Wiley.
  6. 6.0 6.1 6.2 6.3 Celebi Sozener, Z; Cevhertas, L; Nadeau, K; Akdis, M; Akdis, CA (2020). "Environmental factors in epithelial barrier dysfunction". The Journal of Allergy and Clinical Immunology. 145 (6): 1517–1528. doi:10.1016/j.jaci.2020.04.024. PMID 32507229 – via Elsevier.
  7. 7.0 7.1 7.2 7.3 7.4 Celebi Sozener, Z; Ozdel Ozturk, B; Cerci, P (2 February 2022). "Epithelial barrier hypothesis: Effect of the external exposome on the microbiome and epithelial barriers in allergic disease". Allergy. 77 (5): 1418–1449. doi:10.1111/all.15240. PMC 9306534. PMID 35108405 – via Wiley.
  8. 8.0 8.1 8.2 8.3 Celebi Sozener, Z; Ozbey Yucel, U; Altiner, S (8 July 2022). "The External Exposome and Allergies: From the Perspective of the Epithelial Barrier Hypothesis". Frontiers in Allergy. 3: 887672. doi:10.3389/falgy.2022.887672. PMC 9304993. PMID 35873598.
  9. 9.0 9.1 Wills-Karp, Marsha; Santeliz, Joanna; Karp, Christopher L. (1 October 2001). "The germless theory of allergic disease: revisiting the hygiene hypothesis". Nature Reviews Immunology. 1 (1): 69–75. doi:10.1038/35095579. ISSN 1474-1741. PMID 11905816.
  10. 10.0 10.1 10.2 10.3 10.4 Haahtela, T.; Holgate, S.; Pawankar, R. (2013). "The biodiversity hypothesis and allergic disease: world allergy organization position statement". World Allergy Organization Journal. 6 (1): 3. doi:10.1186/1939-4551-6-3. PMC 3646540. PMID 23663440.
  11. 11.0 11.1 11.2 Platts-Mills, Thomas A.E. (July 2015). "The allergy epidemics: 1870-2010". Journal of Allergy and Clinical Immunology. 136 (1): 3–13. doi:10.1016/j.jaci.2015.03.048. PMC 4617537. PMID 26145982.
  12. 12.0 12.1 Fahlbusch, B.; Jager, L.; Heinrich, J.; Grobeta, I.; Wichmann, H.-E.; Richter, K. (24 December 2001). "Allergens in house-dust samples in Germany: results of an East-West German comparison". Allergy. 54 (11): 1215–1222. doi:10.1034/j.1398-9995.1999.00196.x. ISSN 0105-4538. PMID 10604560.
  13. Ring, J.; Akdis, C.A.; Lauener, R. (Aug 2014). "Global Allergy Forum and Second Davos Declaration 2013 Allergy: Barriers to cure - challenges and actions to be taken". Allergy. 69 (8): 978–982. doi:10.1111/all.12406. PMID 25041525.
  14. Pawankar, Ruby (2014). "Allergic diseases and asthma: a global public health concern and a call to action". World Allergy Organization Journal. 7 (1): 12. doi:10.1186/1939-4551-7-12. PMC 4045871. PMID 24940476.
  15. Pawankar, R; Holgate, S.T.; Canonica, G.W.; Lockey, R.F. (2011). WAO White Book on Allergy. World Allergy Organization.
  16. Ring, J.; Akdis, C. (8 July 2014). "Global Allergy Forum and Second Davos Declaration 2013 Allergy: Barriers to cure - challenges and actions to be taken". Allergy. 69 (8): 978–982. doi:10.1111/all.12406. PMID 25041525.
  17. Eder, Waltraud; Ege, Markus J.; von Mutius, Erika (2006-11-23). "The Asthma Epidemic". New England Journal of Medicine. 355 (21): 2226–2235. doi:10.1056/NEJMra054308. ISSN 0028-4793. PMID 17124020.
  18. 18.0 18.1 Bach, Jean-François (2002-09-19). "The Effect of Infections on Susceptibility to Autoimmune and Allergic Diseases". New England Journal of Medicine. 347 (12): 911–920. doi:10.1056/NEJMra020100. ISSN 0028-4793. PMID 12239261.
  19. Backman, H; Räisänen, P; Hedman, L (13 June 2017). "Increased prevalence of allergic asthma from 1996 to 2006 and further to 2016-results from three population surveys". Clinical & Experimental Allergy. 47 (11): 1426–1435. doi:10.1111/cea.12963. PMID 28608416.
  20. Genuneit, J.; Seibold, A. M.; Apfelbacher, C. J. (4 January 2017). "Overview of systematic reviews in allergy epidemiology". Allergy. 72 (6): 849–856. doi:10.1111/all.13123. PMID 28052339.
  21. Biedermann, T.; Winther, L.; Till, S. J.; Panzner, P.; Knulst, A.; Valovirta, E. (2019-04-14). "Birch pollen allergy in Europe". Allergy. 74 (7): 1237–1248. doi:10.1111/all.13758. ISSN 0105-4538. PMID 30829410.
  22. Asher, M.I.; Montefort, S.; Björkstén, B. (Aug 2006). "Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys". The Lancet. 368 (9537): 733–743. doi:10.1016/S0140-6736(06)69283-0. PMID 16935684.
  23. The ISAAC Phase One Study Group; Asher, M Innes; Stewart, Alistair W (21 Jan 2010). "Which population level environmental factors are associated with asthma, rhinoconjunctivitis and eczema? Review of the ecological analyses of ISAAC Phase One". Respiratory Research. 11 (1): 8. doi:10.1186/1465-9921-11-8. ISSN 1465-993X. PMC 2831000. PMID 20092649.
  24. Björkstén, B.; Clayton, T.; Ellwood, P. (Mar 2008). "Worldwide time trends for symptoms of rhinitis and conjunctivitis: Phase III of the International Study of Asthma and Allergies in Childhood". Pediatric Allergy and Immunology. 19 (2): 110–124. doi:10.1111/j.1399-3038.2007.00601.x. ISSN 0905-6157. PMID 17651373.
  25. Haahtela, T; Lindholm, H; Bjorksten, F; Koskenvuo, K; Laitinen, L A (1990-08-04). "Prevalence of asthma in Finnish young men". BMJ. 301 (6746): 266–268. doi:10.1136/bmj.301.6746.266. ISSN 0959-8138. PMC 1663451. PMID 2390620.
  26. Ross Anderson, H; Gupta, R.; Strachan, D. P; Limb, E. S (2007-01-01). "50 years of asthma: UK trends from 1955 to 2004". Thorax. 62 (1): 85–90. doi:10.1136/thx.2006.066407. ISSN 0040-6376. PMC 2111282. PMID 17189533.
  27. Mitchell, E A (1985-04-01). "International trends in hospital admission rates for asthma". Archives of Disease in Childhood. 60 (4): 376–378. doi:10.1136/adc.60.4.376. ISSN 0003-9888. PMC 1777211. PMID 4004316.
  28. Aberg, N. (Jan 1989). "Asthma and allergic rhinitis in Swedish conscripts". Clinical Experimental Allergy. 19 (1): 59–63. doi:10.1111/j.1365-2222.1989.tb02345.x. ISSN 0954-7894. PMID 2784709.
  29. Willits, E.K.; Park, M.A.; Hartz, M.F.; Schleck, C.D.; Weaver, A.L.; Joshi, A.Y. (Oct 2018). "Food Allergy: A Comprehensive Population-Based Cohort Study". Mayo Clinic Proceedings. 93 (10): 1423–1430. doi:10.1016/j.mayocp.2018.05.031. PMC 6366995. PMID 30286830.
  30. Hommeida, S; Grothe, R M; Hafed, Y (2018-12-01). "Assessing the incidence trend and characteristics of eosinophilic esophagitis in children in Olmsted County, Minnesota". Diseases of the Esophagus. 31 (12). doi:10.1093/dote/doy062. ISSN 1120-8694. PMC 6279968. PMID 29982568.
  31. Giavina-Bianchi, Pedro; Aun, Marcelo V.; Kalil, Jorge (Feb 2018). "Drug-induced anaphylaxis: is it an epidemic?". Current Opinion in Allergy & Clinical Immunology. 18 (1): 59–65. doi:10.1097/ACI.0000000000000411. ISSN 1528-4050. PMID 29135486.
  32. Grode, L.; Bech, B.H.; Jensen, T.M. (Jan 2018). "Prevalence, incidence, and autoimmune comorbidities of celiac disease: a nation-wide, population-based study in Denmark from 1977 to 2016". European Journal of Gastroenterology & Hepatology. 30 (1): 83–91. doi:10.1097/MEG.0000000000000992. ISSN 0954-691X. PMID 29076940.
  33. Chen, X.; Wu, Z.; Wang, X. (Nov 2017). "[Prevalence and change of type 2 diabetes mellitus among rural adults in Deqing County, Zhejiang Province in China during 2006-2014]". Wei Sheng Yan Jiu = Journal of Hygiene Research. 46 (6): 868–887. ISSN 1000-8020. PMID 29903193.
  34. Evans, C.; Beland, S.G.; Kulaga, S. (2013). "Incidence and Prevalence of Multiple Sclerosis in the Americas: A Systematic Review". Neuroepidemiology. 40 (3): 195–210. doi:10.1159/000342779. ISSN 0251-5350. PMID 23363936.
  35. Pugliatti, M.; Sotgiu, S.; Solinas, G.; Castiglia, P.; Rosati, G. (2001-04-01). "Multiple sclerosis prevalence among Sardinians: further evidence against the latitude gradient theory". Neurological Sciences. 22 (2): 163–165. doi:10.1007/s100720170017. ISSN 1590-1874. PMID 11603620.
  36. Pereira, M.; Carreira, H.; Lunet, N.; Azevedo, A. (Mar 2014). "Trends in prevalence of diabetes mellitus and mean fasting glucose in Portugal (1987–2009): a systematic review". Public Health. 128 (3): 214–221. doi:10.1016/j.puhe.2013.12.009. PMID 24559769.
  37. 37.0 37.1 37.2 De Benedetto, A.; Rafaels, N.M.; McGirt, L.Y. (Mar 2011). "Tight junction defects in patients with atopic dermatitis". The Journal of Allergy and Clinical Immunology. 127 (3): 773–786.e7. doi:10.1016/j.jaci.2010.10.018. PMC 3049863. PMID 21163515.
  38. Weidinger, Stephan; O'Sullivan, Maureen; Illig, Thomas (May 2008). "Filaggrin mutations, atopic eczema, hay fever, and asthma in children". The Journal of Allergy and Clinical Immunology. 121 (5): 1203–1209.e1. doi:10.1016/j.jaci.2008.02.014. PMID 18396323.
  39. Schmitz, H.; Barmeyer, C.; Fromm, M. (Feb 1999). "Altered tight junction structure contributes to the impaired epithelial barrier function in ulcerative colitis". Gastroenterology. 116 (2): 301–309. doi:10.1016/S0016-5085(99)70126-5. PMID 9922310.
  40. Toedter, Gary; Li, Katherine; Sague, Sarah (Aug 2012). "Genes Associated with Intestinal Permeability in Ulcerative Colitis: Changes in Expression Following Infliximab Therapy". Inflammatory Bowel Diseases. 18 (8): 1399–1410. doi:10.1002/ibd.22853. ISSN 1078-0998. PMID 22223479.
  41. Wawrzyniak, P.; Wawrzyniak, M.; Wanke, K. (Jan 2017). "Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients". Journal of Allergy and Clinical Immunology. 139 (1): 93–103. doi:10.1016/j.jaci.2016.03.050. PMID 27312821.
  42. Xiao, C.; Puddicombe, S.M.; Field, S. (Sep 2011). "Defective epithelial barrier function in asthma". Journal of Allergy and Clinical Immunology. 128 (3): 549–556.e12. doi:10.1016/j.jaci.2011.05.038. PMID 21752437.
  43. Masterson, J.C.; Biette, K.A.; Hammer, J.A. (2 Jul 2019). "Epithelial HIF-1α/claudin-1 axis regulates barrier dysfunction in eosinophilic esophagitis". Journal of Clinical Investigation. 129 (8): 3224–3235. doi:10.1172/JCI126744. ISSN 0021-9738. PMC 6668670. PMID 31264974.
  44. 44.0 44.1 Sugita, K.; Steer, C.A.; Martinez-Gonzalez, I. (Jan 2018). "Type 2 innate lymphoid cells disrupt bronchial epithelial barrier integrity by targeting tight junctions through IL-13 in asthmatic patients". Journal of Allergy and Clinical Immunology. 141 (1): 300–310.e11. doi:10.1016/j.jaci.2017.02.038. PMID 28392332.
  45. Schoultz, I.; Keita, Å. (2 Feb 2022). "Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease—Focusing on Intestinal Barrier Function". Cells. 8 (2): 193. doi:10.3390/cells8020193. ISSN 2073-4409. PMC 6407030. PMID 30813280.
  46. Loxham, M.; Davies, D. E. (Jun 2017). "Phenotypic and genetic aspects of epithelial barrier function in asthmatic patients". Journal of Allergy and Clinical Immunology. 139 (6): 1736–1751. doi:10.1016/j.jaci.2017.04.005. PMC 5457128. PMID 28583446.
  47. Georas, S.N.; Rezaee, F. (Sep 2014). "Epithelial barrier function: At the front line of asthma immunology and allergic airway inflammation". The Journal of Allergy and Clinical Immunology. 134 (3): 509–520. doi:10.1016/j.jaci.2014.05.049. PMC 4170838. PMID 25085341.
  48. Eyerich, K.; Brown, S.J.; Perez White, B.E. (Jan 2019). "Human and computational models of atopic dermatitis: A review and perspectives by an expert panel of the International Eczema Council". Journal of Allergy and Clinical Immunology. 143 (1): 36–45. doi:10.1016/j.jaci.2018.10.033. PMC 6626639. PMID 30414395.
  49. Irvine, A. D.; McLean, W.H.I.; Leung, D.Y.M. (6 Oct 2011). "Filaggrin Mutations Associated with Skin and Allergic Diseases". New England Journal of Medicine. 365 (14): 1315–1327. doi:10.1056/NEJMra1011040. ISSN 0028-4793. PMID 21991953.
  50. Levy, M.; Kolodziejczyk, A.A.; Thaiss, C.A.; Elinav, E. (Apr 2017). "Dysbiosis and the immune system". Nature Reviews Immunology. 17 (4): 219–232. doi:10.1038/nri.2017.7. ISSN 1474-1733. PMID 28260787.
  51. Altunbulakli, C.; Reiger, M.; Neumann, A.U. (Nov 2018). "Relations between epidermal barrier dysregulation and Staphylococcus species–dominated microbiome dysbiosis in patients with atopic dermatitis". Journal of Allergy and Clinical Immunology. 142 (5): 1643–1647.e12. doi:10.1016/j.jaci.2018.07.005. PMID 30048670.
  52. Altunbulakli, C.; Costa, R.; Lan, F. (Aug 2018). "Staphylococcus aureus enhances the tight junction barrier integrity in healthy nasal tissue, but not in nasal polyps". Journal of Allergy and Clinical Immunology. 142 (2): 665–668.e8. doi:10.1016/j.jaci.2018.01.046. PMID 29518417.
  53. Bachert, C.; Gevaert, P.; Holtappels, G.; Johansson, S.G.O.; van Cauwenberge, P. (Apr 2001). "Total and specific IgE in nasal polyps is related to local eosinophilic inflammation". Journal of Allergy and Clinical Immunology. 107 (4): 607–614. doi:10.1067/mai.2001.112374. PMID 11295647.
  54. Sintobin, I.; Siroux, V.; Holtappels, G. (Sep 2019). "Sensitisation to staphylococcal enterotoxins and asthma severity: a longitudinal study in the EGEA cohort". European Respiratory Journal. 54 (3): 1900198. doi:10.1183/13993003.00198-2019. ISSN 0903-1936. PMID 31285304.
  55. Sørensen, M.; Klingenberg, C.; Wickman, M. (Oct 2017). "Staphylococcus aureus enterotoxin sensitization is associated with allergic poly-sensitization and allergic multimorbidity in adolescents". Allergy. 72 (10): 1548–1555. doi:10.1111/all.13175. PMID 28378344.
  56. Friedman, S. J.; Schroeter, A. L.; Homburger, H. A. (Jul 1985). "IgE antibodies to Staphylococcus aureus. Prevalence in patients with atopic dermatitis". Archives of Dermatology. 121 (7): 869–872. doi:10.1001/archderm.1985.01660070059015. ISSN 0003-987X. PMID 4015132.
  57. Kim, YC; Won, HK; Lee, JW (Feb 2019). "Staphylococcus aureus Nasal Colonization and Asthma in Adults: Systematic Review and Meta-Analysis". The Journal of Allergy and Clinical Immunology: In Practice. 7 (2): 606–615.e9. doi:10.1016/j.jaip.2018.08.020. PMID 30193937.
  58. 58.0 58.1 Wang, M.; Tan, G.; Eljaszewicz, A. (May 2019). "Laundry detergents and detergent residue after rinsing directly disrupt tight junction barrier integrity in human bronchial epithelial cells". Journal of Allergy and Clinical Immunology. 143 (5): 1892–1903. doi:10.1016/j.jaci.2018.11.016. PMID 30500342.
  59. Ogulur, I.; Pat, Y.; Aydin, T. (Feb 2023). "Gut epithelial barrier damage caused by dishwasher detergents and rinse aids". Journal of Allergy and Clinical Immunology. 151 (2): 469–484. doi:10.1016/j.jaci.2022.10.020. PMID 36464527.
  60. Galli, S.J.; Starkl, P.; Marichal, T.; Tsai, M. (2017). "Mast Cells and IgE can Enhance Survival During Innate and Acquired Host Responses to Venoms". Transactions of the American Clinical and Climatological Association. 128: 193–221. ISSN 0065-7778. PMC 5525434. PMID 28790503.
  61. Mukai, K.; Tsai, M.; Starkl, P.; Marichal, T.; Galli, S.J. (Sep 2016). "IgE and mast cells in host defense against parasites and venoms". Seminars in Immunopathology. 38 (5): 581–603. doi:10.1007/s00281-016-0565-1. ISSN 1863-2297. PMC 5010491. PMID 27225312.
  62. Akdis, M.; Akdis, C. A.; Weigl, L.; Disch, R.; Blaser, K. (1 Nov 1007). "Skin-homing, CLA+ memory T cells are activated in atopic dermatitis and regulate IgE by an IL-13-dominated cytokine pattern: IgG4 counter-regulation by CLA- memory T cells". Journal of Immunology (Baltimore, Md.: 1950). 159 (9): 4611–4619. doi:10.4049/jimmunol.159.9.4611. ISSN 0022-1767. PMID 9379063.
  63. Jelcic, I.; Al Nimer, F.; Wang, J. (20 Sep 2018). "Memory B Cells Activate Brain-Homing, Autoreactive CD4+ T Cells in Multiple Sclerosis". Cell. 175 (1): 85–100.e23. doi:10.1016/j.cell.2018.08.011. PMC 6191934. PMID 30173916.
  64. Abernathy-Carver, K.J.; Sampson, H.A.; Picker, L.J.; Leung, D.Y. (1 Feb 1995). "Milk-induced eczema is associated with the expansion of T cells expressing cutaneous lymphocyte antigen". Journal of Clinical Investigation. 95 (2): 913–918. doi:10.1172/JCI117743. ISSN 0021-9738. PMC 295586. PMID 7532192.
  65. David, B.A.; Kubes, P. (May 2019). "Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics". Immunological Reviews. 289 (1): 9–30. doi:10.1111/imr.12757. ISSN 0105-2896. PMID 30977202.
  66. Czarnowicki, T.; Krueger, J.G.; Guttman-Yassky, E. (Jun 2017). "Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march". Journal of Allergy and Clinical Immunology. 139 (6): 1723–1734. doi:10.1016/j.jaci.2017.04.004. PMID 28583445.
  67. Han, H.; Roan, F.; Ziegler, S.F. (Jul 2017). "The atopic march: current insights into skin barrier dysfunction and epithelial cell-derived cytokines". Immunological Reviews. 278 (1): 116–130. doi:10.1111/imr.12546. PMC 5492959. PMID 28658558.
  68. 68.0 68.1 Pat, Y.; Ogulur, I.; Yazici, D. (19 Oct 2022). "Effect of altered human exposome on the skin and mucosal epithelial barrier integrity". Tissue Barriers: 2133877. doi:10.1080/21688370.2022.2133877. ISSN 2168-8370. PMID 36262078.
  69. 69.0 69.1 Wang, Z.; Walker, G.W.; Muir, D.C. G.; Nagatani-Yoshida, K. (3 Mar 2020). "Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories". Environmental Science & Technology. 54 (5): 2575–2584. doi:10.1021/acs.est.9b06379. ISSN 0013-936X. PMID 31968937.
  70. Cullinan, P.; Harris, J.M.; Taylor, A.J.N. (2 Dec 2012). "An outbreak of asthma in a modern detergent factory". The Lancet. 356 (9245): 1899–1900. doi:10.1016/S0140-6736(00)03264-5. PMID 11130389.
  71. Medina-Ramon, M.; Zock, J.P.; Kogevinas, M. (1 Sep 2005). "Asthma, chronic bronchitis, and exposure to irritant agents in occupational domestic cleaning: a nested case-control study". Occupational and Environmental Medicine. 62 (9): 598–606. doi:10.1136/oem.2004.017640. ISSN 1351-0711. PMC 1741089. PMID 16109815.
  72. Flindt, M.L.H. (14 Jun 1969). "Pulmonary Disease Due to Inhalation of Derivatives of Bacillus Subtilis Containing Proteolytic Enzyme". The Lancet. 293 (7607): 1177–1181. doi:10.1016/S0140-6736(69)92165-5. PMID 4181838.
  73. Adisesh, A.; Murphy, E.; Barber, C. M.; Ayres, J. G. (1 Aug 2011). "Occupational asthma and rhinitis due to detergent enzymes in healthcare". Occupational Medicine. 61 (5): 364–369. doi:10.1093/occmed/kqr107. ISSN 0962-7480. PMID 21831827.
  74. Jin, Y.; Lu, L.; Tu, W.; Luo, T.; Fu, Z. (1 Feb 2019). "Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice". Science of the Total Environment. 649: 308–317. doi:10.1016/j.scitotenv.2018.08.353. PMID 30176444.
  75. Michaudel, C.; Mackowiak, C.; Maillet, I. (Sep 2018). "Ozone exposure induces respiratory barrier biphasic injury and inflammation controlled by IL-33". Journal of Allergy and Clinical Immunology. 142 (3): 942–958. doi:10.1016/j.jaci.2017.11.044. PMID 29331644.
  76. Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. (Feb 2018). "Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure". American Journal of Respiratory Cell and Molecular Biology. 58 (2): 157–169. doi:10.1165/rcmb.2017-0200TR. ISSN 1044-1549. PMID 28933915.
  77. Caraballo, J.C.; Yshii, C.; Westphal, W.; Moninger, T.; Comellas, A.P. (Feb 2011). "Ambient particulate matter affects occludin distribution and increases alveolar transepithelial electrical conductance: Particulate matter affects alveolar barrier". Respirology. 16 (2): 340–349. doi:10.1111/j.1440-1843.2010.01910.x. PMC 3625061. PMID 21122029.
  78. Vita, A.A.; Royse, E.A.; Pullen, N.A. (27 Jul 2019). "Nanoparticles and danger signals: Oral delivery vehicles as potential disruptors of intestinal barrier homeostasis". Journal of Leukocyte Biology. 106 (1): 95–103. doi:10.1002/JLB.3MIR1118-414RR. ISSN 1938-3673. PMID 30924969.
  79. Aungst, B. (Apr 2000). "Intestinal permeation enhancers". Journal of Pharmaceutical Sciences. 89 (4): 429–442. doi:10.1002/(sici)1520-6017(200004)89:4<429::aid-jps1>3.0.co;2-j. PMID 10737905.
  80. Gullikson, G. W.; Cline, W. S.; Lorenzsonn, V.; Benz, L.; Olsen, W. A.; Bass, P. (Sep 1977). "Effects of anionic surfactants on hamster small intestinal membrane structure and function: relationship to surface activity". Gastroenterology. 73 (3): 501–511. doi:10.1016/S0016-5085(19)32131-6. ISSN 0016-5085. PMID 892348.
  81. Keita, Å.V.; Alkaissi, L. Y.; Holm, E.B. (10 Feb 2020). "Enhanced E. coli LF82 Translocation through the Follicle-associated Epithelium in Crohn's Disease is Dependent on Long Polar Fimbriae and CEACAM6 expression, and Increases Paracellular Permeability". Journal of Crohn's and Colitis. 14 (2): 216–229. doi:10.1093/ecco-jcc/jjz144. ISSN 1873-9946. PMC 7008151. PMID 31393983.
  82. Roberts, C. L.; Keita, A. V.; Duncan, S. H. (1 Oct 2010). "Translocation of Crohn's disease Escherichia coli across M-cells: contrasting effects of soluble plant fibres and emulsifiers". Gut. 59 (10): 1331–1339. doi:10.1136/gut.2009.195370. ISSN 0017-5749. PMC 2976079. PMID 20813719.

External links

Add External links

This article "Epithelial Barrier Theory" is from Wikipedia. The list of its authors can be seen in its historical. Articles taken from Draft Namespace on Wikipedia could be accessed on Wikipedia's Draft Namespace.