Calcium Battery

From Wikitia
Jump to navigation Jump to search

Calcium batteries are energy storage and delivery technologies (i.e., electro-chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier in solution as well as in the electrodes (anode and cathode). Calcium (ion) batteries remain an active area of research,[1][2][3] with work persisting in the discovery and development of electrodes and electrolytes the enable stable, long-term battery operation.

Benefits and Advantages

Calcium batteries are consider a next-generation, or post-Li-ion energy storage system, namely one of the many candidates that may potentially replace lithium-ion technology. Key advantages sought in such post-Li-ion systems is lower cost, earth abundance, higher energy density, and higher power output. There are several benefits to the development and use of calcium batteries. Calcium is the fifth most abundant mineral in the Earth's crust, and the most abundant alkaline earth metal, and the third most abundant metal after aluminum (Al) and iron (Fe).[4] A calcium metal anode offers a higher volumetric and gravimetric electrochemical capacities (2072 mAh mL–1 and 1337 mAh g–1, respectively) than current commercial graphite anodes in Li-ion batteries (300–430 mAh mL–1 and 372 mAh g–1).[5] Calcium metal anodes have a 2+ oxidation state which would provide a greater energy density over monovalent systems (i.e., Li+ and Na+), and it has a standard reduction potential 0.17 V greater than that of Lithium. Compared to divalent systems, calcium batteries can have a higher cell voltage than magnesium because of the 0.5 V lower standard reduction potential of the latter. Ca2+ also has the potential for faster reaction kinetics as compared to magnesium (Mg2+) owing to its lower polarizing properties and charge density both in the electrode as well as in an intercalation cathode.

Components

A veritiable calcium (ion) battery has not yet been commericially realized, but remains in the realm of research and development. Effort concentration of developing effective anode and cathode materials, as well as electrochemically stable electrolytes.

Anodes

Examples of anode materials include: vanadium oxide,[6] Copper-calcium alloying, MgV2O5, graphite, [7] metal calcium,[8] and silicon anodes.[9] Recent work on plating/stripping calcium was done in ethylene carbonate/propylene carbonate (EC/PC) solutions at elevated temperatures.[10] It was also shown at room temperature in different electrolytes such as tetrahydrofuran and EC/PC.[11][12] Aqueous batteries have used calcium vanadate.[13]

Cathodes

Cathodes examined recently include calcium cobalt oxide[6] and titanium disuphide,[14][15] as well as hexacyanoferrates,[16][17] or dual carrier batteries,[18] as well as for aqueous calcium ion batteries. Theoretical work has been performed to ascertain the potential of cathodes from different crystal structures such as perovskite[19], spinel,[20][21] other naturally occurring calcium compounds,[22] as well as other calcium lanthanide oxide phases.

Other Battery Architectures

A primary Ca-S battery was examined.[23] Ca-S batteries have also been examined using Li as a mediator to make it reversible.In addition, a calcium-air (Ca-O2) battery has been examined.[24]

Electrolytes

Several different electrolyte systems have been examined for calcium (ion) batteries. Electrolytes are still an area of investigation, where previous work has shown that many low show low electrochemical stability. Redox reactions on calcium metal in several organic electrolytes was initially examined by Aurbach et al.[25] Water as the electrolyte has been examined in a calcium ion battery.[13] Alkyl carbonate electrolyte have also been examined.[12][10] Theoretical studies have also been conducted on aprotic solvents showing they have favorable solvation/de-solvation properties.[26] This has also been followed by experimental observations of salt solvation by different solvents.[27] New salts based on Calcium hexafluoroisopropoxide (Ca(Ohfip)2·xTHF) and tris-hexafluoroisopropoxy borate (B(Ohfip)3) have also been examined.[28][29] Polymer electrolytes have also been examined. One of the first samples of a polymer electrolyte was PVA/PVP complexed with CaCl2.[30] Subsequent studies demonstrated polymer electrolytes made from PEDGA[31] and PTHF[32] both with Ca(NO3)2. Ionic liquids have also been examined.[33]

References

  1. Arroyo-de Dompablo, M. Elena; Ponrouch, Alexandre; Johansson, Patrik; Palacín, M. Rosa (2019-10-29). "Achievements, Challenges, and Prospects of Calcium Batteries". Chemical Reviews. 120 (14): 6331–6357. doi:10.1021/acs.chemrev.9b00339. ISSN 0009-2665. PMID 31661250.
  2. Arroyo-de Dompablo, M. Elena; Ponrouch, Alexandre; Johansson, Patrik; Palacín, M. Rosa (2019-10-29). "Achievements, Challenges, and Prospects of Calcium Batteries". Chemical Reviews. 120 (14): 6331–6357. doi:10.1021/acs.chemrev.9b00339. ISSN 0009-2665. PMID 31661250.
  3. Stievano, Lorenzo; De Meatza, Iratxe; Bitenc, Jan; Cavallo, Carmen; Brutti, Sergio; Navarra, Maria Assunta (2021-01-15). "Emerging calcium batteries". Journal of Power Sources. 482: 228875. Bibcode:2021JPS...48228875S. doi:10.1016/j.jpowsour.2020.228875. ISSN 0378-7753.
  4. "Chemistry of the Elements - 2nd Edition". www.elsevier.com. Retrieved 2020-04-07.
  5. Muldoon, John; Bucur, Claudiu B.; Gregory, Thomas (2014-12-10). "Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond". Chemical Reviews. 114 (23): 11683–11720. doi:10.1021/cr500049y. ISSN 0009-2665. PMID 25343313.
  6. 6.0 6.1 Cabello, Marta; Nacimiento, Francisco; González, José R.; Ortiz, Gregorio; Alcántara, Ricardo; Lavela, Pedro; Pérez-Vicente, Carlos; Tirado, José L. (2016-06-01). "Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material". Electrochemistry Communications. 67: 59–64. doi:10.1016/j.elecom.2016.03.016. ISSN 1388-2481.
  7. Prabakar, S. J. Richard; Ikhe, Amol Bhairuba; Park, Woon Bae; Chung, Kee-Choo; Park, Hwangseo; Kim, Ki-Jeong; Ahn, Docheon; Kwak, Joon Seop; Sohn, Kee-Sun; Pyo, Myoungho (2019). "Graphite as a Long-Life Ca2+-Intercalation Anode and its Implementation for Rocking-Chair Type Calcium-Ion Batteries". Advanced Science. 6 (24): 1902129. doi:10.1002/advs.201902129. ISSN 2198-3844. PMC 6918123. PMID 31890464.
  8. Monti, Damien; Ponrouch, Alexandre; Araujo, Rafael B.; Barde, Fanny; Johansson, Patrik; Palacín, M. Rosa (2019-02-20). "Multivalent Batteries—Prospects for High Energy Density: Ca Batteries". Frontiers in Chemistry. 7: 79. Bibcode:2019FrCh....7...79M. doi:10.3389/fchem.2019.00079. ISSN 2296-2646. PMC 6391315. PMID 30842941.
  9. Ponrouch, A.; Tchitchekova, D.; Frontera, C.; Bardé, F.; Dompablo, M. E. Arroyo-de; Palacín, M. R. (2016-05-01). "Assessing Si-based anodes for Ca-ion batteries: Electrochemical decalciation of CaSi2". Electrochemistry Communications. 66: 75–78. doi:10.1016/j.elecom.2016.03.004. ISSN 1388-2481.
  10. 10.0 10.1 Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M. R. (February 2016). "Towards a calcium-based rechargeable battery". Nature Materials. 15 (2): 169–172. Bibcode:2016NatMa..15..169P. doi:10.1038/nmat4462. ISSN 1476-4660. PMID 26501412.
  11. Wang, Da; Gao, Xiangwen; Chen, Yuhui; Jin, Liyu; Kuss, Christian; Bruce, Peter G. (January 2018). "Plating and stripping calcium in an organic electrolyte". Nature Materials. 17 (1): 16–20. Bibcode:2018NatMa..17...16W. doi:10.1038/nmat5036. ISSN 1476-4660. PMID 29180779.
  12. 12.0 12.1 Biria, Saeid; Pathreeker, Shreyas; Li, Hansheng; Hosein, Ian D. (2019-10-30). "Plating and Stripping of Calcium in an Alkyl Carbonate Electrolyte at Room Temperature". ACS Applied Energy Materials. 2 (11): 7738–7743. doi:10.1021/acsaem.9b01670. ISSN 2574-0962.
  13. 13.0 13.1 Liu, Liyuan; Wu, Yih-Chyng; Rozier, Patrick; Taberna, Pierre-Louis; Simon, Patrice (2019). "Ultrafast Synthesis of Calcium Vanadate for Superior Aqueous Calcium-Ion Battery". Research (Washington, D.c.). 2019: 6585686. PMC 6944483. PMID 31912041. Retrieved 2020-02-21.
  14. Lee, Changhee; Jeong, Yun-Taek; Nogales, Paul Maldonado; Song, Hee-Youb; Kim, YangSoo; Yin, Ri-Zhu; Jeong, Soon-Ki (2019-01-01). "Electrochemical intercalation of Ca2+ ions into TiS2 in organic electrolytes at room temperature". Electrochemistry Communications. 98: 115–118. doi:10.1016/j.elecom.2018.12.003. ISSN 1388-2481.
  15. Tchitchekova, Deyana S.; Ponrouch, Alexandre; Verrelli, Roberta; Broux, Thibault; Frontera, Carlos; Sorrentino, Andrea; Bardé, Fanny; Biskup, Neven; Arroyo-de Dompablo, M. Elena; Palacín, M. Rosa (2018-02-13). "Electrochemical Intercalation of Calcium and Magnesium in TiS2: Fundamental Studies Related to Multivalent Battery Applications". Chemistry of Materials. 30 (3): 847–856. doi:10.1021/acs.chemmater.7b04406. ISSN 0897-4756.
  16. Padigi, Prasanna; Goncher, Gary; Evans, David; Solanki, Raj (2015-01-01). "Potassium barium hexacyanoferrate – A potential cathode material for rechargeable calcium ion batteries". Journal of Power Sources. 273: 460–464. Bibcode:2015JPS...273..460P. doi:10.1016/j.jpowsour.2014.09.101. ISSN 0378-7753.
  17. Tojo, Tomohiro; Sugiura, Yosuke; Inada, Ryoji; Sakurai, Yoji (2016-07-20). "Reversible Calcium Ion Batteries Using a Dehydrated Prussian Blue Analogue Cathode". Electrochimica Acta. 207: 22–27. doi:10.1016/j.electacta.2016.04.159. ISSN 0013-4686.
  18. Shiga, Tohru; Kondo, Hiroki; Kato, Yuichi; Inoue, Masae (2015-12-17). "Insertion of Calcium Ion into Prussian Blue Analogue in Nonaqueous Solutions and Its Application to a Rechargeable Battery with Dual Carriers". The Journal of Physical Chemistry C. 119 (50): 27946–27953. doi:10.1021/acs.jpcc.5b10245. ISSN 1932-7447.
  19. Dompablo, M. E. Arroyo-de; Krich, C.; Nava-Avendaño, J.; Palacín, M. R.; Bardé, F. (2016-07-20). "In quest of cathode materials for Ca ion batteries: the CaMO3 perovskites (M = Mo, Cr, Mn, Fe, Co, and Ni)". Physical Chemistry Chemical Physics. 18 (29): 19966–19972. Bibcode:2016PCCP...1819966A. doi:10.1039/C6CP03381D. ISSN 1463-9084. PMID 27398629.
  20. Zhao, Zhongjuan; Yao, Jinpei; Sun, Baozhen; Zhong, Shuying; Lei, Xueling; Xu, Bo; Ouyang, Chuying (2018-11-15). "First-principles identification of spinel CaCo2O4 as a promising cathode material for Ca-ion batteries". Solid State Ionics. 326: 145–149. doi:10.1016/j.ssi.2018.10.004. ISSN 0167-2738.
  21. Liu, D.; Zhu, W.; Trottier, J.; Gagnon, C.; Barray, F.; Guerfi, A.; Mauger, A.; Groult, H.; Julien, C. M.; Goodenough, J. B.; Zaghib, K. (2013-11-18). "Spinel materials for high-voltage cathodes in Li-ion batteries". RSC Advances. 4 (1): 154–167. doi:10.1039/C3RA45706K. ISSN 2046-2069.
  22. Torres, A.; Luque, F. J.; Tortajada, J.; Arroyo-de Dompablo, M. E. (2019-07-04). "Analysis of Minerals as Electrode Materials for Ca-based Rechargeable Batteries". Scientific Reports. 9 (1): 9644. Bibcode:2019NatSR...9.9644T. doi:10.1038/s41598-019-46002-4. ISSN 2045-2322. PMC 6609692. PMID 31273248.
  23. See, Kimberly A.; Gerbec, Jeffrey A.; Jun, Young-Si; Wudl, Fred; Stucky, Galen D.; Seshadri, Ram (2013). "A High Capacity Calcium Primary Cell Based on the Ca–S System". Advanced Energy Materials. 3 (8): 1056–1061. doi:10.1002/aenm.201300160. ISSN 1614-6840.
  24. Reinsberg, Philip; Bondue, Christoph J.; Baltruschat, Helmut (2016-10-06). "Calcium–Oxygen Batteries as a Promising Alternative to Sodium–Oxygen Batteries". The Journal of Physical Chemistry C. 120 (39): 22179–22185. doi:10.1021/acs.jpcc.6b06674. ISSN 1932-7447.
  25. Aurbach, D.; Skaletsky, R.; Gofer, Y. (1991-12-01). "The Electrochemical Behavior of Calcium Electrodes in a Few Organic Electrolytes". Journal of the Electrochemical Society. 138 (12): 3536. Bibcode:1991JElS..138.3536A. doi:10.1149/1.2085455. ISSN 1945-7111.
  26. Shakourian-Fard, Mehdi; Kamath, Ganesh; Taimoory, S. Maryamdokht; Trant, John F. (2019-07-05). "Calcium-Ion Batteries: Identifying Ideal Electrolytes for Next-Generation Energy Storage Using Computational Analysis". The Journal of Physical Chemistry C. 123 (26): 15885–15896. doi:10.1021/acs.jpcc.9b01655. ISSN 1932-7447.
  27. Forero-Saboya, J. D.; Marchante, E.; Araujo, R. B.; Monti, D.; Johansson, P.; Ponrouch, A. (2019-12-12). "Cation Solvation and Physicochemical Properties of Ca Battery Electrolytes". The Journal of Physical Chemistry C. 123 (49): 29524–29532. doi:10.1021/acs.jpcc.9b07308. ISSN 1932-7447. PMC 6961307. PMID 31956392.
  28. Shyamsunder, Abhinandan; Blanc, Lauren E.; Assoud, Abdeljalil; Nazar, Linda F. (2019-08-22). "Reversible Calcium Plating and Stripping at Room Temperature Using a Borate Salt". ACS Energy Letters. 4 (9): 2271–2276. doi:10.1021/acsenergylett.9b01550. ISSN 2380-8195.
  29. Li, Zhenyou; Fuhr, Olaf; Fichtner, Maximilian; Zhao-Karger, Zhirong (2019-12-04). "Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries". Energy & Environmental Science. 12 (12): 3496–3501. doi:10.1039/C9EE01699F. ISSN 1754-5706.
  30. Vanitha, D.; Bahadur, Sultan Asath; Nallamuthu, Nallaperumal; Shunmuganarayanan, Athimoolam; Manikandan, A. (March 2018). "Studies on Conducting Polymer Blends: Synthesis and Characterizations of PVA/PVP Doped with CaCl2". www.ingentaconnect.com. Retrieved 2020-02-21.
  31. Genier, Francielli S.; Burdin, Cameron V.; Biria, Saeid; Hosein, Ian D. (2019-02-28). "A novel calcium-ion solid polymer electrolyte based on crosslinked poly(ethylene glycol) diacrylate". Journal of Power Sources. 414: 302–307. Bibcode:2019JPS...414..302G. doi:10.1016/j.jpowsour.2019.01.017. ISSN 0378-7753.
  32. Wang, Jiayue; Genier, Francielli S.; Li, Hansheng; Biria, Saeid; Hosein, Ian D. (2019-07-12). "A Solid Polymer Electrolyte from Cross-Linked Polytetrahydrofuran for Calcium Ion Conduction". ACS Applied Polymer Materials. 1 (7): 1837–1844. doi:10.1021/acsapm.9b00371.
  33. Biria, Saeid; Pathreeker, Shreyas; Genier, Francielli S.; Li, Hansheng; Hosein, Ian D. (2020-03-23). "Plating and Stripping Calcium at Room Temperature in an Ionic-Liquid Electrolyte". ACS Applied Energy Materials. 3 (3): 2310–2314. doi:10.1021/acsaem.9b02529.

External links

Add External links

This article "Calcium Battery" is from Wikipedia. The list of its authors can be seen in its historical. Articles taken from Draft Namespace on Wikipedia could be accessed on Wikipedia's Draft Namespace.